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Autism spectrum conditions (henceforth ‘autism’)
refer to a group of neurodevelopmental conditions
involving difficulties in social interaction and com-
munication and unusually repetitive and restricted
behaviours and interest. Twin and family stud-
ies have established a significant heritability for
autism. Autism is polygenic with variations across
the allele frequency spectrum contributing to risk.
Early linkage and candidate gene association stud-
ies were statistically underpowered to identify
significant loci. Current genome-wide association
studies have identified significant positive genetic
correlation between autism and various measures
of cognition. The use of genetic microarrays and
next-generation DNA sequencing has identified
tens of genes and copy number variants associ-
ated with autism. In addition, RNA microarray
and sequencing studies of postmortem brain sam-
ples have identified transcriptionally altered genes
and pathways in autism. Multiple lines of evidence
converge on altered glial, synaptic and chromatin
pathways as contributing to autism risk.

Introduction

Autism spectrum conditions (henceforth autism) refer to a het-
erogeneous group of neurodevelopmental disorders characterised
by difficulties in social interaction and communication alongside
unusually repetitive behaviour and unusually narrow interests
(Lai et al., 2013). It has an estimated prevalence of 1 in 100,
although recent reports from the Centers for Disease Control and
Prevention (CDC) suggest that it may be higher (1 in 68). The
median worldwide prevalence is estimated between 0.62 and 0.70
(Lai et al., 2013). There is a marked sex difference: between 3 and
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4 times as many males are diagnosed with autism compared to
females, which may be due to innate biological factors (e.g. a
female protective effect) or due to other social or cultural factors
(e.g. females with autism may be better at ‘masking’ their pheno-
types and hence may not be diagnosed with autism, and females
are often diagnosed later than males) (Lai et al., 2013). In addi-
tion to the difficulties in the core diagnostic criteria, individuals
with autism often have other comorbid phenotypes. For example,
many individuals have atypical language development, sensory
hypo or hypersensitivity and difficulties in motor coordination,
including dyspraxia. Approximately 38% of all individuals with
autism have intellectual disability (ID), as estimated by the CDC.
Similarly, there is a reasonably high comorbidity with ADHD,
depression and suicidal ideation (Lai et al., 2013).

Aside from clinical comorbidities, on average, individuals with
autism tend to perform better on measures of ‘systemising’ drive
(Baron-Cohen et al., 2003), that is, the drive to analyse and build
systems, based on identifying the laws that govern the particular
system, in order to predict how that system will work. Systems
may be abstract, mechanical, natural, collectible and motoric.
They also perform better on tests of attention to detail (Jolliffe and
Baron-Cohen, 1997), a prerequisite for systemising. Individuals
who are in the science-technology-engineering-maths (STEM)
fields, or relatives of these individuals, are more likely to be diag-
nosed with autism or have higher levels of autistic traits (Ruzich
et al., 2015; Wheelwright and Baron-Cohen, 2001; Baron-Cohen
et al., 1997). Autistic individuals also, on average, tend to have
difficulties in eye contact (Jones and Klin, 2013), attention to
social stimuli (Dawson et al., 1998) and interpreting emotions
(Baron-Cohen et al., 2001), which contribute to persistent dif-
ficulties in social interaction and communication. This may be
because the social domain is less amenable to systemising, as it
does not reduce to a set of rules.

There is considerable evidence that autism is partly genetic.
Early twin studies established a prominent role for genetic vari-
ants by investigating concordance rate of both the clinical phe-
notype and associated behavioural and cognitive phenotypes in
twins (reviewed in Bourgeron, 2016a; Ronald and Hoekstra,
2011). Recently, with increase in diagnosis rates and the avail-
ability of electronic records, it has been possible to establish
familial recurrence rates in large population-based cohorts, pro-
viding converging evidence for familial recurrence rates (Sandin
et al., 2014; Sandin et al., 2015). Buoyed by the heritability esti-
mates, early molecular genetic studies focused largely on linkage
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and candidate gene sequencing and association studies in autism.
Candidate gene association studies were conducted in relatively
small sample sizes, with systematic inflation of effect sizes (War-
rier et al., 2015a). Most of the results from these studies have not
replicated in studies with larger samples.

However, there were some early successes in candidate gene
sequencing studies, particularly in identifying genes for syn-
dromic conditions with comorbid autism such as FMR1, TCS2
and NF1 (Bourgeron, 2016a). The considerable genetic and phe-
notypic heterogeneity in autism has made it challenging to iden-
tify genes associated with the condition, necessitating investi-
gations in large population cohorts given the small effect sizes
and/or rarity of the genetic variants. Recent studies have lever-
aged large sample sizes available in population databases for
autism such as the Simon’s Simplex Collection and the Autism
Genetic Research Exchange. In this article, we review the differ-
ent methods used to investigate the genetic architecture of autism
and related traits, and recent progress in autism genetics research.

Establishing heritability: twin studies
and familial recurrence
Since the first description in 1943 by Kanner (1943), autism was
known to be a condition that manifested in early childhood, lead-
ing to the hypothesis that the condition is at least partly genetic.
Establishing heritability is important, as it provides evidence for a
causal role of genes in autism risk, which can then inform molecu-
lar genetic studies. Early family studies that were conducted in the
1960s and 1970s did not find evidence for familiality, which was
because autism was perceived as an extremely rare condition (in
the 1960s and 1970s, prevalence estimates for autism were 2–4 in
10 000). However, deeper examination of family factors provided
two clues that autism is likely to be, at least partly, heritable. First,
the recurrence rate in siblings was considerably higher than the
risk in the general population, and second, there was a family his-
tory of delayed speech in about a quarter of the families of autistic
individuals surveyed. Despite this, early twin studies in the 1960s
and 1970s were inconclusive due to methodological issues and
the lack of statistical power.

The first twin study to report evidence for familiality in autism,
by Folstein and Rutter in 1977, investigated the concordance
of autism in a small sample of 11 monozygotic twins (MZ)
and 10 dizgyotic twins (DZ) (Folstein and Rutter, 1977). The
concordance for autism was 36% in the MZ twins and 0% in DZ
twins. Expanding the criteria to include associated cognitive and
social impairment or the broad autism phenotype (BAP) showed
that 82% of the MZ twins were concordant, whereas only 10% of
the DZ twins were concordant. Since then, several studies have
investigated the heritability of autism in twin samples in different
populations. Heritability estimates have largely been comparable
and high across twin studies, regardless of the ascertainment
criteria (Ronald and Hoekstra, 2011).

A recent meta-analysis of seven twin studies identified a high
twin heritability of 64–91% (Tick et al., 2016). In parallel, twin
studies of ‘autistic traits’ have identified modest to high heritabili-
ties between 60% and 90%, although this varies depending on the
type of measure used and the age of the participants (Ronald and
Hoekstra, 2011). A few studies have also conducted multivariate

coheritability analyses of autism and related traits, suggesting
a significant shared genetic influence. The genetic correlation
between autism/autistic traits and ADHD/ADHD traits in partic-
ular is high reflecting the phenotypic comorbidity (Ronald and
Hoekstra, 2011). See also: Twin Studies

Family recurrence rates have also provided evidence for her-
itability for autism. Multiple studies from Scandinavian coun-
tries have identified similar risk ratio for siblings of individu-
als with autism (∼10%) (Sandin et al., 2014; Grønborg et al.,
2013; Jokiranta-Olkoniemi et al., 2016). Family recurrence rates
also offer other clues into the underlying genetic architecture
of autism. One interesting observation is that siblings of female
probands have higher risk for autism than siblings of male
probands – an observation that is called the Carter effect (the
effect was originally described in pyloric stenosis (Carter and
Evans, 1996), but subsequently used in other conditions). The
Carter effect suggests that females have a protective effect, sug-
gesting that a greater mutation burden is required for a clinical
diagnosis of autism (this has been confirmed using gene sequenc-
ing studies, see the following discussion). If the genetic risk is
partly familial, that is not de novo, this higher genetic risk can be
inherited by siblings, thus increasing the risk for autism. Inves-
tigations of twin and multiplex family samples have identified
a higher relative risk for autism in siblings of female probands
(Werling and Geschwind, 2015; Robinson et al., 2013). In con-
trast, large population studies have failed to find support for the
Carter effect (Sandin et al., 2014).

Another interesting finding is the identification of autistic traits
or the BAP in family members of probands (Wheelwright et al.,
2010). This is also supported by the identification of higher
relative risk for other psychiatric conditions in family members
of probands compared to the general population (Frazier et al.,
2015; Constantino et al., 2010; Jokiranta-Olkoniemi et al., 2016).

A third interesting finding is that of parental age. A few studies
have demonstrated that increased paternal age increases the risk
for autism (Sandin et al., 2015; Frans et al., 2013; McGrath et al.,
2014). Indeed, a considerable proportion of de novo mutations are
paternal in origin (Kong et al., 2012; Gratten et al., 2016). Earlier
studies have noted that increased paternal age also increases the
risk for de novo mutations in the sperm as the number of cell
replications increases with age (Kong et al., 2012; Gratten et al.,
2014).

Finally, another hypothesis which has received considerable
support is the idea that higher autistic traits or psychiatric liability
in individuals is likely to delay fatherhood (McGrath et al., 2014;
Gratten et al., 2014). However, a recent study has shown in addi-
tion to increased paternal age, the difference in ages of the parents
also contributes to risk for autism, with the risk increasing as the
difference in ages increases (Sandin et al., 2015). The mechanism
underlying the increased risk for increased differences in parental
age is unclear.

Early studies: linkage

With evidence of considerable heritability for autism from twin
studies, early genetic studies focused on linkage of multiplex
autism families to identify loci associated with the condi-
tion. Linkage studies investigate the inheritance of regions of
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chromosomes in family pedigrees. The first autism linkage
study was reported by IMGSAC in 99 families (International
Molecular Genetic Study of Autism Consortium, 1998). Early
linkage studies were nonparametric and in a relatively small
sample size of 100–200 families. These studies used relatively
sparse linkage genotyping and yielded limited success. Although
several loci have been associated with autism or related traits,
only a few of these loci have been consistently associated with
the condition (Geschwind and State, 2015a). Some of these
loci overlap with observed copy number variation in autism,
suggesting that these may indeed reach statistical significance
as sample sizes increase. For example, Alarcon and colleagues
identified linkage at 7q35 when investigating language-related
quantitative traits in autism (Alarcón et al., 2008). Copy num-
ber variation in 7q35 has also been implicated in autism (see:
https://gene.sfari.org/autdb/CNVSecDis.do?l=7q35), although
this is not significant at a genome-wide level (Sanders et al.,
2015). Replication and functional analysis in foetal postmortem
brain tissues identified CNTNAP2 as a likely candidate gene
associated with language-related phenotypes in autism (Alarcón
et al., 2008). However, subsequent sequencing studies have failed
to identify a significant association between rare genetic variants
in CNTNAP2 and autism (Murdoch et al., 2015; Sanders et al.,
2015), although Cntanp2− mice display language and social
deficits (Peñagarikano et al., 2011). See also: Linkage Analysis

Early studies: syndromic forms of autism
and candidate gene associations
Many genes currently associated with autism were first identi-
fied through specific syndromic forms of autism. For example,
four early genes identified with autism – FMR1, TSC1 and TSC2
and MECP2 – are all associated with syndromic forms of autism
(fragile X syndrome, tuberous sclerosis and Rett syndrome).
Early studies also investigated large chromosomal abnormalities
by karyotyping. Because of the low resolution of these studies,
it was impossible to identify specific genes associated with the
condition. Today, the prevalence of chromosomal abnormalities is
estimated to be less than 2% in autism (Bourgeron, 2016a). How-
ever, early studies identified genes by sequencing candidate genes
in loci with frequent deletions and/or duplications in autism.

Bourgeron and colleagues used this approach to identify three
early genes with autism: SHANK3, NLGN3 and NLGN4X (Jamain
et al., 2003; Durand et al., 2007). NLGN3 and NLGN4X code
for postsynaptic, transmembrane proteins called neuroligins that
contribute to the formation and maintenance of synapse. Follow-
ing the observations of de novo deletions at Xp22.3, Jamain and
colleagues sequenced three neuroligin genes, NLGN3, NLGN4X
and NLGN4Y, in individuals with autism and identified muta-
tions in two families (Jamain et al., 2003). This was followed
by the sequencing of SHANK3, which codes for another postsy-
naptic protein that binds with neuroligins (Durand et al., 2007).
SHANK3 is in 22q13, microdeletions which were known to con-
tribute to developmental delay and autistic behaviour. Three of
the families sequenced carried mutations in SHANK3 providing
evidence for the association of SHANK3 with autism. Subsequent
gene sequencing efforts in large cohorts has provided further sup-
port for NLGN3 and SHANK3 in autism (Sanders et al., 2015).

Candidate gene approaches have also provided several false
positives. Several genes have been investigated in autism
using a candidate gene association approach (for a list, see:
https://gene.sfari.org/autdb/HG_Home.do). These were typi-
cally but not always conducted in relatively small sample sizes,
investigating a small number of genetic variants. Warrier, Chee
and colleagues conducted a meta-analysis of candidate gene
association studies in autism where they reviewed the evidence
of 552 genes that have been included in association studies
in autism (Warrier et al., 2015a). Common genetic variants in
only 27 of these genes had been investigated in three or more
independent cohorts, suggesting a scarcity of well-replicated
genetic associations for autism. None of the variants included
in the meta-analysis were significant in a larger genome-wide
association cohort.

Genome-wide association studies
of autism and related traits
A few genome-wide association studies have also investigated the
genetic architecture of autism with limited success. In contrast
to candidate gene association studies, genome-wide association
studies typically investigate hundreds of thousands of genetic
variants across the genomes and then correct for the total number
of independent statistical tests performed. Owing to the number
of tests performed, sample sizes have to be several orders of mag-
nitude larger than candidate gene association studies to identify
significant associations.

The first study, by Wang et al. (2009), investigated 780 families
initially and a second cohort of 1453 autistic individuals and
7070 controls. Meta-analysis of the two cohorts identified one
locus at 5p14.1 that was significant (P< 5× 10−8). This intergenic
locus was located between two cadherin genes (CDH10 and
CDH9) that are involved in diverse neural functions and contain
a unique calcium-binding domain. They replicated the locus in
two smaller, independent cohorts. Interestingly, this region was
also implicated in another genetic association study that used
data from 438 autistic families (Ma et al., 2009). SNPs in 5p14.1
were nominally significant (P< 0.05) although it did not reach
genome-wide significance.

Despite these early success, subsequent studies have not been
able to replicate association at 5p14.1 at a genome-wide associa-
tion level, leading to the conclusion that these early studies were
statistically underpowered and the effect size inflated due to win-
ner’s curse (or regression to the mean, where the effect size that
are most likely to cross the threshold of significance are likely to
be inflated when the statistical power is limited).

Four further studies have reported significant associa-
tion results. In 2009, Weiss, Arking and colleagues (Weiss
et al., 2009) used data from multiple different cohorts and
meta-analysed results from transmission disequilibrium tests
and association studies to identify one SNP that was significant
at 5p15.2 between genes SEMA5A and TAS2R1. However, the
P-value threshold used for significance was not the traditional
GWAS threshold of 5× 10−8, but a more liberal threshold of
2.5× 10−7, identified using permutation and after accounting
for LD. Another study by Anney and colleagues (Anney et al.,
2010) divided participants into four groups along two axes: one
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on ethnicity (primary European ancestry vs all ancestry) and one
on diagnosis (strict autism vs inclusive spectrum). They iden-
tified an intronic SNP in MACROD2 that was associated with
strict autism below a genome-wide threshold. A further study
conducted a cross-ethnic meta-analysis (European ancestry and
Chinese ancestry) to identify variants associated with autism.
Meta-analysis identified common variants at the 1p13.2 locus
associated with autism. Interestingly, 1p13.2 has been previously
been linked to autism in linkage studies (Xia et al., 2014).
Recently, work from the Psychiatric Genomics Consortium
using genetic data on more than 16 000 individuals identified
an association at 10q24.32 (rs1409313, P= 1.05× 10−8) (The
Autism Spectrum Disorders Working Group of The Psychiatric
Genomics Consortium 2017).

Despite the general lack of replicably associated loci, there
is considerable evidence for a role of common genetic variants,
en masse, identified using different SNP heritability measures.
Using data from simplex (only one individual with an autism
diagnosis) and multiplex families (at least two individuals with an
autism diagnosis in the family), Klei et al. (2012) have identified
a narrow-sense heritability between 40% and 65% for autism.
The heritability was higher for multiplex families (65%) than
for simplex families (∼40%), consistent with the observation of
higher number of de novo loss of function (dnlof) mutations in
simplex probands than in the general population (Iossifov et al.,
2014; Kosmicki et al., 2017; Sanders et al., 2015).

This estimate of narrow-sense heritability was confirmed by
another study that suggested that the majority of the genetic risk
for autism is attributable to common variants (Gaugler et al.,
2014). The same study identified that dnlof mutations contributed
to ∼3% of the variance but explained a significant proportion of
individual liability. Summing up the contribution from different
classes of genetic risk, genetic variants explained approximately
about 60% of the total variance (Gaugler et al., 2014). The limited
success in identifying significant loci despite the considerable
SNP heritability may be due to multiple reasons, including the
high polygenicity of the condition and the considerable pheno-
typic heterogeneity.

Other studies have tried to investigate the genetic architec-
ture of specific subtypes of autism. Two studies have investi-
gated the genetic architecture of Asperger syndrome, a subtype
of autism where individuals have average or above average intel-
lectual ability and preserved language. Neither of the studies,
however, identified genome-wide significant association (Salyak-
ina et al., 2010; Warrier et al., 2015b). A third study conducted
family-based association analysis based on IQ and symptom pro-
files but did not identify significant differences in heritability nor
significant associations, possibly owing to the reduced sample
size and, consequently, statistical power (Chaste et al., 2015).
As there is considerable phenotypic differences between males
and females, another study also investigated sex-stratified analy-
sis but did not find evidence for higher genetic risk for females
with autism (Mitra et al., 2016).

A few studies have also investigated the genetic architecture
of traits related to autism, given the considerable twin heri-
tability of autistic and related social traits. Two studies have
investigated the genetic architecture of social communication
in children. Using data from a longitudinal cohort (ALSPAC),

St Pourcain and colleagues investigated the SNP heritability of
social communication difficulties using the Children’s Communi-
cation Checklist (CCC) and the Social-Communication Disorders
Checklist (SCDC) (St Pourcain et al., 2013, 2014). Both pheno-
types were modestly heritable, with an SNP heritability estimate
of the 0.18 for the CCC-derived phenotype and SNP heritability
estimates ranging from 0.08 to 0.45 for the SCDC across differ-
ent ages. Work from our laboratory has also identified significant
SNP heritabilities for traits related to autism. Measures of empa-
thy (cognitive and self-report) had significant SNP heritabilities
of between 0.05 and 0.12 (Warrier et al., 2016; Warrier et al.,
2017).

Development in statistical methods has also allowed for the
interrogation of SNP coheritabilities (or genetic correlations)
between autism and different phenotypes. Work by Robinson,
St Pourcain and colleagues identified a significant and replicable
genetic correlation between clinically diagnosed autism and the
broader autism phenotype measured using the SCDC (rg ∼ 0.30)
(Robinson et al., 2016). However, this was dependent on the
age at which the SCDC was completed by individuals, with the
highest genetic correlation in childhood, which declined with age
(St Pourcain et al., 2017). Interestingly, there was no significant
genetic correlation between autism and different measures of
empathy (Warrier et al., 2016; Warrier et al., 2017).

In parallel, genetic correlation analyses have also investigated
the shared genetic architecture between autism and nonsocial
traits. The most interesting of these is the consistent positive
genetic correlation between autism and different measures of
cognition including educational attainment, childhood and adult
cognition and number of college years (Bulik-Sullivan et al.,
2015; Clarke et al., 2015; Sniekers et al., 2017). Select traits
that share a phenotypic and genetic correlation with measures of
cognition are also positively genetically correlated with autism
such as systemising (an interest in rule-based systems) (Warrier
et al., 2016).

This is in contrast with several studies that have identified a
significant comorbidity and ID (Lai et al., 2013). There is some
epidemiological and genetic evidence of different genetic archi-
tecture of autism with versus without ID (Robinson et al., 2014),
although a comprehensive discussion is outside the scope of this
article. A recent study, however, did not identify a difference
in polygenic transmission for autism or educational attainment
genetic scores between individuals with autism with versus with-
out ID, providing support for a two-hit model (wherein a dnlof
mutation in combination with a background of genetic risk pre-
disposes an individual to autism as opposed to a dnlof mutation
alone) (Weiner et al., 2017). Interestingly, a recent study has
identified that common genetic variants associated with different
signatures of positive evolutionary selection in humans, and this
may possibly linked to the underlying pleiotropy with different
measures of cognition (Polimanti and Gelernter, 2017).

The current genetic correlation results are limited by the sample
size and the effect statistical power of the autism GWAS analysis.
Work from the Psychiatric Genomics Consortium (forthcoming)
using a larger autism GWAS sample has identified several addi-
tional significant correlations including with other psychiatric
conditions. See also: Genome-Wide Association Studies
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Copy Number Variation in Autism

Copy number variants (CNVs) are submicroscopic genomic dele-
tions or duplications that are larger than 1000 nucleotides (an
arbitrary number). These are frequent in the genome and alter
gene dosage (Zarrei et al., 2015). Several de novo and inher-
ited CNVs have been identified in autism. In 2007, Sebat and
colleagues published the first investigation of CNVs in autism.
Using data from 118 simplex families, 44 multiplex families and
99 control families, they identified a significant excess of de novo
CNVs in simplex probands (Sebat et al., 2007). Since then, sev-
eral studies have investigated the role of CNVs in autism and
replicated the initial results (reviewed in (Chung et al., 2014;
Geschwind and State, 2015a)). Several well-validated results
have emerged. CNVs are found in significantly higher frequency
in probands compared to unaffected siblings (approximately 2–3
times more CNVs than siblings) (Sanders et al., 2015). Further,
in probands, the CNVs tend to affect a larger number of genes,
altering gene dosage of multiple genes. Consistent with the Carter
effect, female probands carry more de novo CNVs than male
probands (Sanders et al., 2015).

In addition, the number of de novo CNVs is significantly asso-
ciated with lower IQ, a finding that has been replicated in multiple
studies (Leppa et al., 2016; Levy et al., 2011). Overall, de novo
CNVs are thought to contribute to small but significant propor-
tion of risk in autism, with 5–15% of individuals with autism
carrying de novo CNVs compared to only 1–2% in the general
population (Geschwind and State, 2015a). While several CNVs
have been identified, it has been challenging to identify CNVs
at genome-wide significance due to the difference in lengths and
number of genes affected by different CNVs at the same locus. By
investigating de novo CNVs in multiple large cohorts, Sanders
and colleagues identified six risk loci: 1q21.1, 3q29, 7q11.23,
16p11.2, 15q11.2-13 and 22q11.2 (Sanders et al., 2015).

Insights from Next-generation
Sequencing Studies

The sequencing of the human genome in 2004, along with
the advent of next-generation sequencing methods, allowed for
large-scale hypothesis-free interrogation of the genome in autism
using whole exome and, more recently, whole genome sequenc-
ing studies of large cohorts. These studies have identified a promi-
nent role for dnlof mutations in autism. Although dnlof mutations
have large effect sizes in comparison to common variants, their
relative rarity in the population in addition to the genetic hetero-
geneity in the population makes it difficult to identify genes at a
genome-wide significant threshold. Considerable advances have
been made in identifying high confidence genes in autism using
next-generation sequencing in largely simplex families, and there
has been convergence on key findings (De Rubeis et al., 2014;
Iossifov et al., 2014; Sanders et al., 2015; Samocha et al., 2014;
Neale et al., 2012; O’Roak et al., 2012a,b).

Similar to de novo CNVs, dnlof mutations are enriched in
simplex autism (where one child has a diagnosis of autism and
the parents and other siblings do not have an autism diagnosis)

compared to controls. Female probands are likely to harbour
more dnlof mutations than male probands, which is in line with
the Carter effect. Similar to de novo CNVs, dnlof mutations are
also associated with lower IQ and more severe autistic pheno-
types. It is also clear that the number of dnlof mutations increases
with paternal age, likely because spermatogonia undergo more
active mitosis to produce sperm cells. Finally, these studies have
also identified that de novo missense mutations and inherited
loss-of-function mutations show smaller effects than dnlof
mutations.

Recent efforts have integrated data from multiple sources in
order to identify genes that are frequently mutated. Sanders and
colleagues (Sanders et al., 2015) identified 65 high confidence
genes (false discovery rate <0.1), although it is estimated that
between 450 and 1000 such genes may be involved in autism
(Geschwind and State, 2015a). Two recent studies have expanded
and refined this list of genes using different methods. Yuen and
colleagues performed whole-genome sequencing on multiplex
autism families and identified 18 additional genes (Yuen et al.,
2015; Yuen et al., 2017). In parallel, Kosmicki and colleagues
utilised genetic data from a large-scale population resource – the
Exome Aggregation Consortium (Lek et al., 2016) – to identify
which de novo variants are not observed in the general population
(Kosmicki et al., 2017).

Partly due to the families sequenced and partly due to the under-
lying genetic architecture, many of the genes identified turn out
not unique to autism. Indeed, several of these genes are also seen
in conditions such as ID and schizophrenia (Geschwind and Flint,
2015), a feature that is also shared by CNVs identified in autism
and common genetic variation. This shared pleiotropy among
autism, ID and schizophrenia, among other conditions, suggests
that a combination of different genetic and environmental effects
shapes the disease-specific mechanisms. Investigation of tran-
scriptomic signatures of autism and ID has identified distinct
biological networks that contribute to ID and autism (Parikshak
et al., 2013).

The use of large-scale data has also allowed for convergence
in identifying pathways, particularly synaptic function, chro-
matic remodelling and downstream targets of FMR1, MECP2 and
CHD8 (Pinto et al., 2014; Bourgeron, 2015). Several of the genes
identified are associated with postsynaptic density, and many of
the mutations are thought to affect synapse formation and plastic-
ity, both during child development and in adulthood. Functional
studies using postmortem brain tissue, and animal models, have
identified altered synaptic development and pruning (Zoghbi and
Bear, 2012; Tang et al., 2014). A few genes identified have also
been associated with specific features, leading to subtypes of
autism associated with mutations in specific genes.

For example, CHD8 is the most frequently mutated gene
in autism. CHD8 encodes for a transcriptional repressor and
remodels the chromatin by recruiting histone H1. Phenotypically,
CHD8 mutations cause macrocephaly (enlarged head circum-
ference) and increased brain size and persistent gastrointestinal
issues, which have been modelled in zebrafish (Bernier et al.,
2014). These are all clinical signs in subgroups on the autism
spectrum. Individuals with CHD8 mutations also have similar
facial dysmorphic features, including widely spaced eyes and a
broad nasal tip, alongside cognitive impairments (Bernier et al.,
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2014). In parallel, sequencing studies have also identified muta-
tions in CTNNB1, a gene that encodes a protein (beta-catenin)
that closely interacts with CHD8. CHD8 negatively regulates
beta-catenin, and mutations in CTNNB1 cause microcephaly
and in some cases autism (Krumm et al., 2014). Several other
genes identified in autism are associated with specific features,
including DYRK1A (O’Roak et al., 2012a, 2012b) and ADNP
(Helsmoortel et al., 2014). It is important to note that none of
these genes have complete penetrance for autism, suggesting a
small but significant role for other factors, including background
genetic variation and environment, in modulating the effects of
the mutation in these genes.

Transcriptional Dysregulation
in Autism

As autism is a neurodevelopmental condition, studies have also
sought to investigate alterations in gene expression directly in
the developing brain. Parikshak et al. (2013) and Willsey et al.
(2013) both used transcriptomic data from developing cortical
tissues to identify if genetic risk for autism shows spatiotemporal
convergence, using different methods. Willsey and colleagues
constructed gene coexpression network using high-confidence
autism genes as seed genes and investigated the enrichment
for probable autism genes across multiple temporal and spatial
windows. They identified enrichment in midfoetal prefrontal and
primary motor-somatosensory cortex. Further, by investigating
layer-specific gene expression, they were further able to identify
enrichment in the cortical innerplate in the midfoetal prefrontal
and primary motor-somatosensory cortices.

Parikshak and colleagues used a different approach to inves-
tigate convergence of genetic risk in autism in the developing
brain. Using whole-genome transcriptome data, they constructed
weighted gene coexpression modules agnostic of relationship
to candidate genes in autism and followed their expression tra-
jectories across developmental time. They identified three gene
coexpression modules that were enriched for candidate genes
and transcriptionally dysregulated genes in autism. Interestingly,
rare de novo variants were enriched in two different coexpression
modules, suggesting that transcriptional dysregulation and rare
de novo variants represent distinct mechanisms of risk in autism.
Layer-specific enrichment analyses identified significant enrich-
ment with the inner cortical plate in the developing brain.

A few studies have also investigated gene dysregulation in adult
cortical and subcortical tissues, by systematically identifying
differentially expressed genes in the autism postmortem brains
compared to control postmortem brains (Gupta et al., 2014;
Voineagu et al., 2011; Parikshak et al., 2016). These studies have
identified several important results. First, cortical gene expression
can help to separate the transcriptomes of autistic individuals
from population controls. Second, these studies have been able
to identify differentially expressed genes (both upregulated and
downregulated) in autism cortex compared to control cortex,
although analyses of the autism cerebellum in comparison to the
control cerebellum have not been forthcoming.

These differences are likely to extend to other cortical and
subcortical regions. For example, there is evidence that typical

differences in gene expression in the frontal and temporal cor-
tices are altered in autism (Parikshak et al., 2016). Third, there
is replicable evidence to suggest that differentially downregu-
lated genes are associated with neuronal and synaptic pathways,
whereas upregulated genes are associated with glial (microglia
and astrocytes in particular) and immune-related pathways.

Integrative transcriptome analyses have also identified similar-
ities and differences across multiple conditions. A meta-analysis
of gene-expression microarray data across cortical transcrip-
tional data sets has revealed overlapping neuropathology between
autism and psychiatric conditions such as schizophrenia, bipolar
disorder and major depression (Gandal et al., 2016). The corre-
lation between transcriptional dysregulation between these con-
ditions parallels the genetic correlation identified using GWAS
data. This shared pathophysiology was replicated using ribonu-
cleic acid (RNA) sequencing data. Another study provided inde-
pendent evidence for the shared pathophysiology between autism
and schizophrenia, by significant and correlation of the tran-
scriptional dysregulation between the two conditions (Ellis et al.,
2016).

Conclusions

Autism is an extremely heterogeneous condition. Twin and famil-
ial recurrence rates have established significant heritability for the
condition and related traits. Rare and common genetic variants,
along with copy number variation and transcriptional dysreg-
ulation, contribute to risk for the condition. The high genetic
and phenotypic heterogeneity makes gene discovery challeng-
ing. Interrogating large cohorts have identified some genes and
CNVs that contribute to risk for autism, although these represent
a small proportion of the genes that are hypothesised to contribute
to the condition. Mutations in some genes contribute to specific
subtypes in autism with shared clinical and behavioural charac-
teristics.

No common variants have been consistently associated with
autism, although it is clear that they contribute, en masse, to a
significant proportion of the underlying risk. Bivariate and mul-
tivariate analyses have identified considerably pleiotropy with
several other conditions, including measures of condition. This
pleiotropy is also observed at the level of the cortical transcrip-
tome. There has been considerable effort to develop larger and
richer genetic databases of autism, and interrogation of these
larger data sets will considerably advance our understanding of
the genetics and biology of autism.
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Glossary

Association study Studies that systematically test for
differences in the frequency of variation between cases and
controls or for association between allele frequency and a
quantitative trait. Candidate gene association studies
investigate variations in specific genes. Genome-wide
association studies investigate variations across the genome.

Common variation Genetic variation where the minor allele is
observed in at least 1% of the population.

Heritability Proportion of the total variance in a condition or
trait that can be attributable to genetics.

Rare variation Genetic variation that is observed in less than
1% of the population.
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