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Abstract  

Steroids have an important role in growth, development, sexual differentiation and 

reproduction. All four classes of steroids, androgens, estrogens, progestogens and 

glucocorticoids, have varying effects on the brain. Androgens and estrogens are involved in 

the sexual differentiation of the brain, and also influence cognition. Progestogens such as 

progesterone and its metabolites have been shown to be involved in neuroprotection, 

although their protective effects are timing dependent. Glucocorticoids are linked with stress 

and memory performance, also in a dose- and time-dependent manner. Importantly, 

dysfunction in steroid function has been implicated in the pathogenesis of disease. 

Moreover, regulating steroid-signalling has been suggested as potential therapeutic avenue 

for the treatment of a number of neurodevelopmental, psychiatric and neurodegenerative 

disorders. Therefore, elucidating the role of steroids in typical and atypical brain function is 

essential for understanding normal brain functions as well as determining their potential use 

for pharmacological intervention in the atypical brain. However, the majority of studies have 

thus far have been conducted using animal models, with limited work using native human 

tissue or cells. Here we review the effect of steroids in the typical and atypical brain, focusing 

on the cellular, molecular functions of these molecules determined from animal models, and 

the therapeutic potential as highlighted by human studies. We further discuss the promise of 

human induced pluripotent stem cells (iPSCs), including advantages of using 3D neuronal 

cultures (organoids) in a high-throughput screens, in accelerating our understanding of the 

role of steroids in the typical brain, and in their therapeutic value in the understanding and 

treatment of the atypical brain. 
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Sections 

1. Introduction 

Steroid hormones are cyclical chemical compounds made up of rings of carbon atoms that 

play an essential role in a wide range of physiological functions, including growth, 

development, energy metabolism, homeostasis and reproduction. Within the brain, these 

molecules exert profound effects on brain development, sexual differentiation, reproductive 

behaviour and cognition, including learning and memory (1-5). Traditionally steroids have 

been described to exert their actions by binding to classic nuclear receptors located within 

cytoplasm, which then translocate to the nucleus and regulate gene transcription over a 

period of hours to days. The crucial structural and functional effects that steroid hormones 

have on the brain have made them prime targets for studying mechanisms associated with 

gene regulation. For example, a high dose of steroid hormones where the levels are 

supposed to be low, and an absence where there is supposed to be high levels of a 

hormone, have been shown to have transformative effects on the physiology of the brain (2, 

6). However, it is now becoming increasing more apparent that many of the actions that 

steroids exert occur within a time frame too rapid to be account for by this mode of action. 

Indeed, many steroid nuclear receptors and several novel steroid receptors have been found 

at the plasma membrane, where they are thought to engage with signalling proteins (3, 5, 7, 

8). The increasing appreciation of the contribution that such ‘membrane-initiated’ actions 

have on how steroids impact brain function, has also led to suggestions that ‘neurosteroids’ 

may need to be regarded more as neuromodulators, or transmitters in addition to hormones 

(9, 10). Interestingly, dysregulation of all 4 steroids classes have been implicated in a range 

of disorders, including stress, autism-spectrum disorders, schizophrenia and Alzheimer’s 

disease, to name but a few: in this review, we use ‘atypical brain’ to describe abnormal brain 

development or function, that contributes to a specific disorder. Moreover, there is continued 

interest in the use of steroids as potential therapeutic agents (1, 3, 11-14).  
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To date, much of our understanding of the molecular and cellular mechanisms by which 

steroids exert their effects within the brain have come from in vitro and in vivo animal based 

models. Such studies have provided a fundamental understanding of the role of steroids in 

neural tissue, however, the effects of these molecules and the underlying molecular 

mechanisms in human neural tissue is limited. Ethical considerations make working with 

human tissue a challenge, if not impossible in certain cases. While several human 

neuroblastoma and immortalized neural cell lines exist, it could be argued that these cellular 

systems do not faithfully recapitulate a human neuronal cellular environment of specific 

neuronal linages or inherent differences that would be expected between individuals. Thus, 

these cellular systems are not fully suited for detailed cellular and molecular studies 

investigating the mechanisms underlying the effects of steroids in neural cells under normal 

or disease states. Recent advances in stem cell biology has now provided us with the ability 

to generate native human neurons in which to study basic and disease mechanisms (15-18). 

This has led to the ability to reprogram patient somatic cells into human induced pluripotent 

stem cells (iPSCs) and the subsequent differentiation of these cells into neural cells of 

specific lineages (16, 17). Importantly, these cells encapsulate and recapitulate the genetic 

landscape and cellular abnormalities associated with complex disease (19, 20). Critically, 

this approach provides a potentially limitless source of live human cells for understanding 

basic neurobiology and disease pathophysiology, and for modelling the actions of potential 

drug targets (16-18, 21).This review aims to cover the effects of gonadal and adrenal 

steroids on the brain, including long term effects on sexual differentiation and acute effects 

on cognition and memory. We aim to do this by giving an overview of the different 

physiological effects brought about by steroid hormones and then classifying the known 

nuclear and cytoplasmic mechanisms responsible for those effects. It is of note that these 

topics have been greatly investigated, and therefore we can only briefly highlight a small 

selection of studies. In addition, we will discuss the effect of dysregulated steroid hormone 

exposure and its implications in atypical brain states, before going on to explore the possible 

use of steroid hormones as therapeutics. Finally, we will discuss how the use of human 
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iPSCs now offers a novel cellular system in which to better understand the role of steroids in 

human neurodevelopment, their contribution to disease and therapeutic potential.  

 

2. Steroid hormones in the typical and atypical brain 

Although sexual dimorphism in an animal is determined by biological sex, sexually 

dimorphic behaviour is not a binary phenomenon. It is achieved through a complicated 

cascade of cellular and molecular changes induced by changing levels of steroid hormones 

in the circulation. Steroid hormones act through nuclear receptor mediated mechanisms that 

cause permanent sexual dimorphism of the brain. However, recent studies have shown that 

under certain conditions, steroid hormones also interact with cell surface receptors to cause 

fast-acting, acute alterations in brain function. This section aims to discuss the well-

characterised effects of steroid hormones on sexual dimorphism of the brain and the 

underlying molecular mechanisms. This section also aims to discuss the more acute effects 

of steroids on behaviour, cognition and memory that act independently of sexually 

dimorphic mechanisms, and may play major roles in the typical and atypical brain. 

 

a. Sexually dimorphic brain and behaviour mediated by testosterone and estrogens 

induced nuclear receptor regulation 

Transformative effects of steroids on sexual dimorphism of the brain first starts taking shape 

in humans during fetal development when there is a surge of testosterone in the male fetus 

during 8 to 24 weeks of gestation (22, 23), and this hormone surge is believed to have long 

lasting structural and functional effects on the brain. The presence of fetal testosterone (fT) 

during gestation has been associated with greater gray matter volume in right 

temporoparietal junction/posterior superior temporal sulcus (RTPJ/pSTS), while an absence 

of fT has been associated with greater volume in planum temporale/planum operculum 
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(PT/PO) and posterior lateral orbitofrontal cortex (plOFC) (23). Testosterone exposure 

during the prenatal period also affects the adult sexually dimorphic nucleus of the preoptic 

area (SDN-POA), a substructure of the medial preoptic area of the hypothalamus (MPOA), in 

humans which is 2.2 times larger in men as in women (24). In rodent studies, the spinal cord 

nucleus (SNB, spinal nucleus of the bulbocavernosus) and the MPOA and especially its 

substructure, SDN-POA are also larger on average in males as in females (25, 26), while on 

the other hand the anteroventral periventricular nucleus (AVPV) is larger in females as in 

males (2). 

There is a hypothesized role of fT in atypical neurodevelopment through associative studies 

from our group which show significant association of elevated fT levels with autism when 

compared to healthy individuals, and fT levels were positively associated with higher scores 

on Childhood Autism Spectrum Test (CAST) and the Child Autism Spectrum Quotient (AQ-

Child) (27). The brain region RTPJ, which has been shown to have a greater volume with 

increased fT, is also known to be associated with autism (28, 29). Additionally, elevated 

testosterone levels have been positively associated with occurrence of obsessive 

compulsive disorder, and Tourette syndrome (30), while elevated levels of gestational 

estrogens have been suggested to increase predisposition to schizophrenia (31). 

The mechanism of steroid-induced behavioural outcomes is not well understood, and why 

there is increased steroid hormone levels in individuals with neuropsychiatric conditions 

even less so. Research using animal models have identified two major pathways for long 

term sex steroid effects mediated by steroid receptors – apoptosis and epigenetic 

modulation. Testosterone and estrogens also induce acute changes to neuron and synapse 

structures through a protein kinase mediated mechanism discussed in detail in the next 

section. Sex-specific behaviour is mediated through nuclear receptor mechanisms (Figure 

1), and according to the classical model, testosterone and androgen receptor (AR) binding 

has been shown to be responsible for sex specific behavioural effects in males (32, 33). 

There is additionally a parallel mode of sexual differentiation involving estrogens, and a loss 
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of both estrogen receptors (ERα and ERβ) has been shown to cause atypical male-specific 

behaviour in rats (34), and in males, ERα is believed to augment male sexual behaviour, 

while ERβ is believed to supress female sexual behaviour (35, 36). 

 

Programmed neuronal death 

The hormonal control of cell death is the most well-established mechanism associated with 

sexual dimorphism of the brain (37). Studies in rodent models have revealed sex-specific 

activation of apoptosis in particular subsets of neurons (34). Reduced neuronal death has 

been shown to be responsible for larger SNB and MPOA in males (25, 26, 38, 39). Neuronal 

death in these brain regions in females is ameliorated by treatment with estrogens or 

testosterone (25, 38), resulting in a permanent reversal and masculinization irrespective of 

biological sex. It is believed that aromatase (CYP19), which is responsible for the synthesis 

of estrogens from testosterone and is actively expressed in brain regions involved in sexual 

differentiation (40, 41), plays an important role in masculinisation, and the use of aromatase 

inhibitors has revealed reduced male-typical sexual behaviour in rats. Interestingly, it has 

been shown that apoptosis mediated cell death is not responsible for sexual differences in 

the ovine SDN (oSDN) – a substructure of the MPOA-equivalent brain region in sheep (42). 

The sexually dimorphic brain region AVPV is larger in females due to the unusual nature of 

estrogen activity which in the male AVPV triggers apoptosis of neurons via the activity of 

both the ERα and ERβ (2, 43, 44). 

 

Mechanisms causing testosterone and estrogen mediated sexually dimorphic neuronal 

death include modulation of Bcl-2 (anti-apoptotic factor) and Bax (pro-apoptotic factor) 

expression (45, 46). Estrogens increase Bcl-2 levels and decrease Bax levels in the pre-

optic area of rats (47), and testosterone is believed to have the same effect in an indirect 

fashion through aromatisation to estrogens. 
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Epigenetic mechanisms 

A second major cellular mechanism of steroid signalling involves epigenetic modulation to 

bring about long-term organisational effects. Testosterone and estrogen signalling through 

AR and ERs interact with histone modifying factors such as histone acetyl transferases 

(HATs) to bring about profound gene regulatory effects (6, 48, 49). ERα demonstrates high 

promoter methylation in both sexes corresponding to reduced ERα gene expression in the 

cortex (50, 51), and a study using rats has shown greater ERα promoter methylation is 

associated with higher neonatal maternal grooming and early estradiol exposure (52). 

Another study in mice showed testosterone administration in neonatal females altered brain 

DNA methylation 20-fold in adulthood to shift towards a male methylation pattern (53), while 

short-term effects of testosterone were relatively modest. This late-emerging effect provides 

insight into the vital role of steroids in long term sexually dimorphic molecular changes in the 

brain, and also shows the importance of the effect of steroids on DNA methylation in bringing 

about brain sex-specific organization. 

 

b. Testosterone and estrogens modulate immediate effects on cognition and 

memory by protein kinase pathways 

Behavioural effects 

Testosterone and estrogens are known to have long-term effects on cortical organisation 

through mechanisms mediated by nuclear receptors. Current research has also found 

cytoplasmic mechanisms of action and localisation of AR and ERs outside the cell nucleus, 

in membranes, spines and presynaptic terminals of neurons (5, 54) (Figure 1), having more 

immediate kinase-mediated effects (54) on behaviour and cognition which are independent 

of sexual programming during development. Immediate effects of testosterone and 

estrogens have been reported in human studies, such as one study from our group where a 

single sublingual dose of testosterone administered to young women significantly impaired 
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empathy and social cognition (55), although mechanism of action is not known. Another 

study has reported elevated testosterone levels associated with higher emotional arousal 

and amygdala activation in males (56). In animal model studies, testosterone and estrogen 

administration to ovariectomized adult female rats appear to alter sexually dimorphic 

behaviour in the radial maze and Morris water maze tasks (57-60), while estrogen 

administration specifically appears to cause acute enhancement of memory consolidation 

with improvements in spatial and non-spatial memory tasks (61). Due to technical limitations 

associated with working with human samples, cellular/molecular mechanisms in humans are 

poorly understood, but some steroid-mediated mechanisms involving protein kinases have 

been identified in animal studies, as described below. 

 

Cellular/molecular mechanisms 

General mechanisms responsible for testosterone and estrogen mediated learning and 

memory alterations involve structural and functional modulation of dendrites. Animal studies 

have reported that formation of new memories is associated with estrogens, which increases 

dendritic spine density in the CA1 region of the hippocampus, while also causing structural 

changes to existing spines (62). Dendritic spine density in hippocampus CA1 region has also 

been shown to increase upon administration of testosterone, and this process is estrogen-

independent (63, 64). Previous studies from our group have also established estrogen’s role 

in structural modulation of dendrites in human neurons, and estrogens has been shown to 

not only regulate synaptic transmission, but also increase physical connections between 

neurons (65). Dendritic spine density is regulated by the interaction of steroid hormones with 

the ERK-MAP kinase pathway, and studies in mice have shown that inhibiting 

phosphorylation of ERK-MAP kinases completely prevents estrogen-associated dendritic 

spine formation. The effect of testosterone on spine density is mediated via the same 

mechanism, after conversion of testosterone into estradiol intracellularly (66). Estrogens are 
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also know to induce PI3 kinase (PI3K) and protein kinase A (PKA) activity via G-protein 

coupled estrogen receptor (GPER) which triggers neurite outgrowth via a cAMP response 

element-binding protein (CREB) mediated transcriptional mechanism (8, 67, 68), and, also 

stimulate the formation of new synapses (69), suppression of apoptotic signals in the 

mitochondria to protect neurons from damage (70), prevents tau protein 

hyperphosphorylation in Alzheimer’s disease (71, 72), protects against glutamate 

excitotoxicity and inhibit GABA neurotransmission (73, 74), rapid 5-HT receptors 

desensitisation to accelerate SSRI effect (75, 76), and increased STAT3 activation 

associated with enhanced satiety response (77, 78). Rapid protein kinase-mediated synaptic 

effects of testosterone and estrogens on cognition demonstrates a wider effect of steroid 

signalling in the brain not related to developmental programming or sexual differentiation. 

 

c. Additional transformative effect of progesterone and glucocorticoids through 

nuclear receptor-mediated mechanisms 

i. Progesterone 

Neurodeteriorative effects 

Progesterone, like estrogens has neuroprotective effects, and impacts cognitive function 

(Figure 1) (79). In some cases progesterone has been shown to impair cognition and 

memory, and in other cases it has been shown to have an enhancement (80). The disruptive 

effect on memory and cognition is dependent on timing of progesterone administration. For 

example, one study reported improvement in working and spatial memory after ovariectomy 

in aged female rats, which was reversed on progesterone administration, demonstrating the 

detrimental effects of ovarian progesterone on the female brain (81). Another study using 

human participants reported memory impairment and reduced response to faces in 

amygdala and fusiform gyrus after a single administration of progesterone (82). The 

disruptive effect of progesterone is thought to occur through its metabolite allopregnanolone 
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which binds to GABAA receptors to produce an inhibitory effect and alter the excitatory-

inhibitory balance in the central nervous system (CNS) (83). The disruptive nature of 

allopregnanolone-GABAA receptor interaction also has therapeutic effects, discussed in 

Section 3. 

 

Neuroenhancing effects 

In contrast to the detrimental effects of progesterone described above, many studies have 

shown memory enhancement following progesterone administration. One study reported 

prevention of age-related memory loss in aged overiectomized rats following chronic 

administration of progesterone along with estrogens (84). In certain cases, the progesterone 

metabolite allopregnanolone is involved in the recovery of age-related cognitive deficits (85). 

Progesterone was also shown to enhance learning and memory, and recover age related 

cognitive decline in aged wild-type as well as progesterone receptor knockout (PRKO) mice 

(86). A possible cellular mechanism for progesterone’s role as a memory enhancer is its 

ability to provide neuroprotection against oxidative stress in the hippocampus (87), by 

downregulating pro-apoptotic markers while upregulating anti-apoptotic markers (88). Some 

studies suggest progesterone-mediated neuroprotection might be result of rapid membrane-

initiated kinase activity which downregulates pro-apoptotic factors such as Bcl2-associated 

death promoter (BAD) while upregulating anti-apoptotic factor Bcl2, and this pathway is 

triggered via a membrane progesterone receptor (mPR) (89-91). The effect of progesterone 

on the brain can thus be two-pronged, depending on timing and dose of the hormone, but in 

some conditions treatment with controlled doses of progesterone has been beneficial in 

ameliorating symptoms, as discussed in Section 3. 
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ii. Glucocorticoids 

Neurodeteriorative effects 

Glucocorticoids (cortisol in humans and corticosterone in non-human mammals), like other 

steroid hormones have an important function in the developing fetus, and is required for the 

normal growth and maturation of the cerebral cortex, the hippocampus and pituitary gland 

(92) (Figure 1). Studies in animal models have identified a high level of glucocorticoid-

mediated plasticity in the hippocampus including neurogenesis in dentate gyrus (93) and 

structural modulation of dendrites and synapses in the Ammon’s horn (94). However, similar 

to progesterone, the glucocorticoid surge must occur at a precise developmental window 

and at a precise concentration to maintain normal developmental trajectories (95, 96). 

Studies have shown glucocorticoid administration during late gestation can affect structural 

development of the fetal brain (97), including reduced neuron density in the hippocampus 

(98). Antenatal glucorticoid administration causes thinning of the anterior cingulate gyrus and 

exacerbates associated affective disorders such as anxiety and depression. Anomalous 

glucocorticoid exposure is also linked with increase in risk of cerebral palsy in preterm 

infants (99). Some of the neurological effects of early glucocorticoid exposure also appear to 

be transmitted across multiple generations (100). In humans, persistent lifelong modulation 

of the hypothalamic-pituitary-adrenal (HPA) axis can cause long-term fluctuations of blood 

glucocorticoid level which can have adverse effects on psychiatric health (101). 

Glucocorticoid induced stress can cause reduction in cognitive ability, including deteriorating 

working and nonverbal memory, mental flexibility and information processing (102). These 

symptoms have been associated with dendritic atrophy and synaptic loss in hippocampal 

neurons (103). Glucocorticoids mediate cellular/molecular effects on the synapse and 

dendrites through both the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) 

(104). The promoter region of GR is highly sensitive to stress and glucocorticoid 

administration, and one study has reported increased histone acetylation and DNA 

demethylation associated with the GR promoter region when stress is low (105), increasing 
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GR expression which is associated with an increased glucocorticoid-induced negative 

feedback loop and decreased HPA activity (106). Conversely, increased GR promoter DNA 

methylation has been associated with child abuse victims and people who commit suicide 

(107). 

 

Neuroenhancing effects 

The effect of glucocorticoid-mediated stress can be beneficial when the individual is exposed 

to it during a precise window (108). For example, glucocorticoid administration just after a 

learning event facilitates subsequent consolidation of memory, and these effects are 

particularly strong for emotion-related memories (109-112). However, presentation of stress 

after memory retrieval affects reconsolidation, and later recall in the individual can be 

impaired (113-115). Additionally, exposure to stress before learning in some cases impairs 

memory formation (116, 117), and in other cases enhances it (118, 119). Low blood 

glucocorticoid levels have also been associated with enhanced cerebral infusion, glucose 

utilization, and hippocampal neuron activity, which are reversed when glucocorticoid levels 

increase (120). This establishes the complicated interaction of glucocorticoid-mediated 

stress with cognition and memory, and the importance of administering a low concentrations 

of glucocorticoid at critical windows to have beneficial effect on brain function. For further 

reading, see Moisiadis and Matthews (2014) and Sorrells et al (2009). 

 

3. Steroids as therapeutic agents 

Of the wide-ranging functions of steroids, estrogens and progesterone have consistently 

shown to have a neurological ameliorative and enhancing role, and have thus been 

proposed as potential treatments for certain neuropsychiatric and neurodegenerative 

conditions. The following section discusses the ameliorative effects of estrogens and 
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progesterone, and their roles in the treatment of neuropsychiatric and neurodegenerative 

conditions, also summarised in Table 1. 

 

a. Estrogens 

The cognitive enhancing effects of estrogens, such as 17β-estradiol, have underlined 

suggestions that estrogens or estrogen-mimicking compounds may be a useful therapeutic 

agent for neuropsychiatric conditions (11, 14, 121). Studies in humans have shown higher 

occurrence of schizophrenia in males, and increased psychosis in females during estrogens 

depletion (14, 121), and  administration of 17β-estradiol or the selective estrogens receptor 

modulator, raloxifene, has shown a positive effect on wellbeing and cognition on typical 

individuals as well as individuals with schizophrenia (122, 123). The mechanisms by which 

17β-estradiol is beneficial in neuropsychiatric disorders are not well understood, but are 

thought to be in part through modulation of mono-amine production, including serotonin and 

dopamine, as well as through the modulation of glutamatergic signalling, as well as anti-

inflammatory effects (5, 121). In animals, estrogens also has a mild sexually dimorphic effect 

on a traumatic brain injury rat model with some studies showing higher survival in female 

rats (124, 125), while some reporting better neurological outcomes in males (126). In a rat 

model of spinal cord injury, estrogens treatment can significantly reduce apoptosis while 

enhancing recovery of spinal cord functions (127). 

 

b. Progesterone 

Progesterone and its metabolite allopregnanolone have a neuroprotective function, and are 

able to stimulate neurogenesis and enhance cognition (128). They have a more predictable 

neuroprotective effect which is not sexually dimorphic, and have thus been more extensively 

studied than estrogens as a potential therapeutic agent for neurodegenerative conditions. 
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Progesterone has protective effects on human neurodegenerative conditions such as 

Alzheimer’s disease (129). One study showed administration of progesterone to a rat model 

of Parkinson’s disease significantly reduces depression-like symptoms (130). Administration 

of progesterone and allopregnanolone to rats suffering from severe cerebral ischemia after 

middle cerebral artery occlusion (MCAO) have been found to improve the structure and 

function of the hippocampus, although the preservation of cognitive functions is significantly 

better if progesterone was administered before inducing cerebral ischemia (131), and it is 

hypothesized that even though there is severe neuronal loss in the hippocampus after 

ischemia (132, 133), the neuroprotective action of progesterone is able to enhance structure 

and plasticity of remaining neurons to condition them to carry out alternative strategies in the 

hippocampus or connected structures to restore some of the lost cognitive functions (134, 

135). Traumatic injury to the rat frontal cortex has been reported to kill large numbers of 

neurons, produces acute inflammation, oedema, astrocyte hypertrophy and blood brain 

barrier compromise (136), and progesterone and allopregnanolone have been used to 

alleviate its effects by reducing cell death and DNA fragmentation, protein expression of pro-

apoptotic markers caspase-3 and Bax, as well as astrocyte hypertrophy (137). 

Allopregnanolone has also been successfully used in preventing neuronal death in animal 

models of stroke and spinal cord injury, and it involves a GABAA receptor mediated 

mechanism (138-140). The benefits can be usually seen after only a brief period of 

progesterone administration. 

 

It is thus evident that both estrogens and progesterone have neuroprotective effects on the 

brain, and therefore, may be useful to treat certain symptoms of brain injury, 

neuropsychiatric and neurodegenerative diseases. Estrogens acting via the modulation of 

neurotransmitters such as serotonin, glutamate and dopamine in the brain, or through 

directly influencing glutamatergic function may be the basis by which their beneficial effects 

are produced. Progesterone and its metabolite allopregnanolone seem to act by reducing 
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apoptosis and a wide range of inflammation responses associated with brain injury, while 

also structurally transforming hippocampal neurons to assist in restoration of cognitive 

functions. However, one major limitation of all these studies is that they have been mostly 

undertaken in animal models and how these data translate to humans is unclear. Indeed, it 

is of note that there has only been limited success in translating preclinical work into novel 

therapeutic agents to treat debilitating neurological, neurodevelopmental or 

neurodegenerative disorders. This lack of conversion is due to many factors, but are likely to 

include species differences, differences in brain complexity and disease-specific phenotypes 

(141). One example of this has been in the adoption of hormone therapy for neurological 

conditions in humans. The Women's Health Initiative (WHI) study reported a decrease in 

cognitive function and an increased risk of dementia and stroke in women over 65 years of 

age who received conjugated equine estrogens plus medroxyprogesterone acetate (MPA) 

compared to those who received placebo (142), despite an abundance of preclinical studies 

indicating a neuroprotective role for estrogens in dementia. Although, the findings of these 

studies have come under much criticism (143-146), it is nevertheless critical to develop a 

better understanding of how potential steroid-based therapeutic agents impact normal 

physiology in human neurons, as well as in appropriate models of disease to avoid 

unwanted side-effects. Whilst the use of animal models is essential to such studies, the use 

of additional models that allow investigations in human neurons would be of huge benefit. 

Recent developments in human stem cell technologies especially in induced pluripotent 

stem cell (iPSC) technology, has enabled researchers to model the human brain in a petri 

dish, and as this technology matures, there is potential that steroid research using human-

derived tissues will accelerate the development of novel hormone therapies for neurological 

conditions. 
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4. Role of iPSCs in neurosteroid research 

a. From iPSCs to specific neurons 

The method of reprogramming adult somatic cells to pluripotent stem cells was first 

described in 2006 by Takahashi and Yamanaka. They reported that dermal fibroblasts from 

adult mice could be reprogrammed into a pluripotent state by retroviral transduction of four 

transcription factors: OCT4, KLF4, c-MYC and SOX2 (147). The reprogrammed cells were 

termed induced pluripotent stem cells (iPSCs), and are similar to embryonic stem cells 

(ESCs) in their morphology, proliferation, surface antigens, gene expression and capacity to 

differentiate into the cell types of the three primordial germ layers. Subsequently, Takahashi 

et al. (148) applied the same technology to human adult dermal fibroblasts to generate the 

first human iPSCs. Since this discovery, many others have shown that it is possible to 

generate human iPSCs from other adult somatic cell types, including (but not limited to) 

peripheral blood (149) and hair follicles (150). Over the past 10 years, an array of protocols 

have been developed that have allowed for the differentiation of iPSCs in to specific 

neuronal cell types. These protocols have taken advantage of a wealth of developmental 

studies that have detailed the steps and molecular cues involved in animal embryology. For 

example, the first step in the development of the neural tube, neural induction, is believed to 

be the default pathway involving the bone morphogenetic proteins (BMPs), Wnt and 

fibroblast growth factor (FGF) signalling pathways (151-153). Neural induction leads to a 

default and primitive anterior identity, which is subsequently patterned by extrinsic 

morphogens such as Wnts, FGFs, retinoic acid and Sonic Hedgehog (Shh), to give rise 

forebrain, midbrain, hindbrain or spinal cord domains. 

Neuronal differentiation of iPSCs follow the same pathways as in vivo to give rise to 

mature neuronal populations (154). The most efficient neural induction of hiPSCs is 

achieved by dual inhibition of the SMAD signalling pathway, which involves the synergistic 

inhibition of the BMP and TGFβ pathways to direct pluripotent stem cells down a neuronal 

linage (152), ultimately giving rise to a population of neural progenitors (152, 154, 155). 
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These neural progenitor cell can then be patterned into neuronal cell types with regional 

identities using specific combinations of morphogens, small molecules, growth factors and 

transcription factors. It should be noted, however, that protocols for the directed 

differentiation of iPSCs into neuronal subtypes are imperfect, often yielding a 

heterogeneous population of cell types. Nevetheless, depending on the combination and 

timing of these signals, a variety of neuronal cell types can be obtained, including 

telecephalic precursors (156), midbrain dopaminergic neurons (157), basal forebrain 

cholinergic neurons (158), spinal motor neurons (159), as well as glial cells, such as 

astrocytes (160) oligodendrocytes (161) and microglia-like cells (162). 

 

b. IPSCs: the advantages and caveats of an in-vitro model of brain development 

Much of the work done to identify cellular/molecular mechanisms of steroid action on the 

brain, cognition and memory, has been carried out using animal models. Some studies have 

manipulated steroid hormones to look at effects on human behaviour, however there are 

very few studies that administered steroid hormones on in vitro human brain tissue or cells. 

The limitations of animal research has resulted in slow adoption of steroids as therapeutic 

agents. Advances in stem cell technologies have resulted in the investigation of steroid 

hormone interactions in a human system. It is now possible to reprogram human somatic 

cells into induced pluripotent stem cells (iPSCs) to study closer interaction of steroids with 

human target cells such as neurons derived from iPSCs. This approach to studying the 

nervous system has the advantage that these neurons carry the same genetic make-up of 

the donor. 

The rationale for using iPSC-derived neuronal tissue as a human system to expedite clinical 

research is very strong. The human brain develops very differently from the rodent brain and 

has some human-specific types of neurons not found in rodents (163-165). Moreover, some 

steroid molecules that are effective in humans are not as effective in rodents, while some 
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steroid signalling mechanisms are also different in humans than rodents. For example, 

cortisol is the active glucocorticoid in humans, while corticosterone is more active in rodents 

(120). It is also not clear if the aromatase reaction plays an important role in the developing 

human brain, and whether testosterone acts via its native receptor AR to masculinize the 

brain rather than being converted into estrogens through the aromatase reaction, as 

observed in animal models. It has also been found that in humans, aromatase is only 

expressed in selective brain regions such as the preoptic area, hypothalamus and amygdala 

(166, 167). For these reasons, it is essential to develop in vitro human iPSC models to study 

effects of steroids in humans. It is also possible to accurately characterise the interaction of 

steroids with human gene products involved in synaptic and dendritic plasticity, and also 

identify interactions with genes associated with neuropsychiatric conditions such as autism 

and schizophrenia. Additionally, investigation of the interactions with disease-associated 

mutations will enable understanding of how the cognition and memory enhancing effects of 

steroids can be better used as therapeutic agents for neurodegenerative diseases such as 

Alzheimer’s disease and Parkinson’s disease, neuropsychiatric conditions such as 

depression and schizophrenia, and traumatic cerebral and spinal injury. 

However, the iPSC method is not without its issues. Reprogramming of highly differentiated 

somatic cells such as skin cells or hair cells involves the interaction of key transcription 

factors with epigenetic molecules to transform the chromatin into an open state to promote 

higher active transcription (168-170). Most differentiated somatic cells have a closed 

chromatin state with several highly condensed heterochromatin regions inhibiting 

transcription of genes not required to maintain a somatic lineage (171). Unfortunately, the 

reprogramming method is highly inefficient and not completely understood, and iPSCs can 

sometimes retain lineage-specific chromatin signatures, thereby creating differentiation 

biases towards the original somatic cell (172). There are also issues with the neuronal 

differentiation protocols. The monolayer culture method, which is currently the most 

prevalent method used to generate iPSC-neurons, using a dual SMAD inhibition strategy to 
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generate neurons (173, 174), has several disadvantages. The most important one is it lacks 

spatial organization of the brain. Neuronal morphology and gene expression is also heavily 

dependent on mechanical properties of cell adhesion to plate surface and neighbouring 

cells, while plating density and cell adhesion substrate determined quantity and types of 

neurons (168). 

Thankfully most of the issues are technical and some of them are already being addressed. 

For example, a 2017 study showed histone H3K4 methylation patterns associated with 

somatic lineage identity is a major cause for the inefficiency of transcriptional reprogramming 

(175), suggesting that demethylation of methylated H3K4 in iPSCs might be a possible 

strategy to increase reprogramming efficiency. To overcome drawbacks of monolayer 

cultures, there has been rapid development of methods for generating cerebral organoids, 

which are able to mimic 3D structure, cell type composition and organization, and 

connectivity of the human brain (176-178). Neurons in organoid cultures are able to 

demonstrate greater complexity of cellular interaction while undergoing reduced stress 

compared to monolayer cultures. Naturally occurring cell-to-cell contact seen in organoids 

also helps organize progenitors and neurons in layers typically observed in the human brain 

(168, 176-178). 

 

c. Studying the actions of steroids in human neurons 

To our knowledge, very few studies have directly investigated the actions of steroids in 

human neurons generated from iPSCs. The cellular mechanisms associated with the clinical 

phenotypes are also not well understood, especially role of protein kinase mediated 

immediate effects in humans. Moreover, there is little fundamental knowledge of the 

stoichiometric ratios of steroid biosynthesis pathway components in neuropsychiatric 

conditions, and very little understanding of why there is elevated level of steroids associated 
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with these conditions. Human iPSC derived neurons provide the tools to carry out controlled 

experiments to investigate these previously unidentified cellular/molecular mechanisms. 

Our groups have focused on the generation of fore-brain-like, glutamatergic neurons 

from iPSCs, based on a previously described protocol (154). We first generated iPSCs from 

keratinocytes in hair follicles using a non-integrating Sendai virus based reprogramming 

method (CytoTune-iPS Sendai Reprogramming, Thermo Fisher), then using the 

aforementioned neuron differentiation protocol we generated mature and immature 

glutamatergic neurons within 40 days; these cells express a range of proteins, including 

synaptic proteins associated with developing glutamatergic neurons (Figure 2A-C).  

Preliminary data demonstrated that male iPSC-derived immature neurons respond to 17β-

estradiol exposure. Specifically, 17β-estradiol treatment for 24 hours resulted in an increase 

in neurite outgrowth in these cells (18). Interestingly, it has recently been reported that 17β-

estradiol promoted synapse formation between iPSCs-derived dopaminergic neurons and 

HEK293 cells, and furthermore, facilitated grafting of these neurons into striatum of a rat 

model of Parkinson’s disease (179). Another study by our group investigating the effect of 

testosterone on male iPSC-derived neurons from individuals with autism using real time 

PCR (180), has shown elevated differential expression of androgen receptor (AR) in autism 

iPSC-neurons compared to control iPSC-derived neurons, after just 24 hours of testosterone 

administration at physiological levels (2 nM) (181). Some putative downstream genes were 

also differentially expressed on testosterone administration, such as brain-derived 

neurotrophic factor (BDNF), gonadotrophin releasing hormone (GnRH) and apoptotic marker 

p38α (Figure 2D). This suggested differential effect of testosterone on autism iPSC-neurons 

compared to control neurons after only a short burst of hormone administration. Whether this 

is indicative of a membrane-mediated rapid mechanism of action for testosterone is 

something that will need to be ascertained in future studies. Further studies will also be 

necessary to validate these observations, as well as characterisation of phenotypic changes 

brought about by testosterone. 
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d. Promise of organoids as a tool to study steroid hormone-brain interactions 

Cerebral organoids are self-organized brain tissue derived from stem cells, generated using 

a patterning growth factor-free culture method to induce the transformation of embryoid 

bodies into neuroectoderm. By manipulating growth conditions and environment necessary 

for mimicking developmental cues, complex brain tissue growth can be established 

exhibiting heterogeneous regionalization of different brain areas, including some ventral 

forebrain regions, dorsal cortex, and choroid plexus. Cerebral organoids also form discrete 

cortical layers with stereotypical inside-out organization as well as human-specific 

characteristics such as presence of outer radial glia (oRG), and matured cortical neurons 

with various pyramidal identities (177). This ability of 3D cerebral organoid culture to 

resemble properties of the developing human brain more closely than monolayer cultures or 

animal models has made it a preferred model system for undertaking research into the 

human central nervous system, and it has been proposed to use this method to generate 

“personalized organoids” to test the effects of steroid hormones and develop drugs (15, 182, 

183) (Figure 3). Steroid hormones with therapeutic properties such as estrogens and 

progesterone can be studied by generating patient-specific organoids in 3D-printed mini-

bioreactors, recently developed for the study of the Zika virus on neurodevelopment (184). 

Human brain imaging and animal model studies have shown that testosterone and 

estrogens have a well characterized effect on cortical thickness (185-187), but the regulatory 

mechanisms are not known and the organoid system is perfectly suited for this kind of study. 

Sexual differentiation of cortical microstructures can also be studied using high-throughput 

organoid cultures. 

5. Conclusions 

We have reviewed the important role steroids play in development and sexual differentiation 

of the brain through a nuclear receptor mediated mechanism. Sex-dependent effects of 

steroids are long term and involve regulation of transcriptional and epigenetic machinery that 
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brings about permanent changes to brain structures and functions. One well-characterised 

mechanism of action is through differential modulation of apoptosis in neurons depending on 

biological sex. This results in increased size of brain regions such as MPOA and SNB in 

males, and larger AVPV in females. The acute, immediate effects of steroids on cognition 

and memory are evident and act through a cytoplasmic protein kinase mediated mechanism. 

Testosterone and estrogens are both able to modulate dendritic spine density and structure, 

while also altering synaptic transmission, although they have different effects on cognition. 

Testosterone impairs social cognition, and influences autistic traits, while estrogens has 

neuroprotective effects and enhances memory consolidation and spatial and non-spatial 

memory tasks. Progesterone, like estrogens, has neuroprotective effects on the brain, 

although this effect is highly dependent on the timing of exposure. The neuroprotective effect 

of progesterone against oxidative stress in the hippocampus has a memory enhancing 

effect, while its metabolite, allopregnanolone binds to GABAA receptors increasing inhibition 

of the CNS and thus disrupting the excitatory-inhibitory balance. Glucocorticoids, the primary 

stress hormone, have similar time-dependent and dose-dependent effects on the brain. 

Although high doses of glucocorticoids are harmful to the brain, low levels of glucocorticoid 

exposure during specific periods of the learning process can significantly enhance memory 

consolidation, especially if they are related to emotions. 

As steroids and their metabolites have been recurrently proposed as potential therapeutic 

avenues for a range of neurodevelopmental, neuropsychiatric and neurodegenerative 

disorders, there is a compelling to supplement and future preclinical studies carried out in 

animal models, with those carried out in human neurons. However, as many of these 

disorders have not only complex aetiologies and underlying molecular and genetic 

underpinnings, it is not always possible to recapitulate this in animal models. Therefore, 

translating or refining such findings from preclinical studies into therapies is not 

straightforward. Deriving iPSCs from specific patient cohorts with similar genetic background 

and clinical phenotyping, has the potential to improve our understanding of how steroid-
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based therapies can be used, and possibly more importantly, improved. Recent 

developments in iPSC technologies, along with the ability to recapitulate developing 3D brain 

structures of individual donors, has made it possible to undertake high-throughput testing of 

steroid molecules, including several recently discovered neurosteroids which endogenously 

mediate neuronal functions previously not known to be associated with steroid signalling 

pathways. Future studies into the synthesis and mechanisms of action of these 

neurosteroids will further enhance our understanding of the effects of steroids on the brain, 

and enable us to isolate compounds with greater therapeutic potential for neurodegenerative 

conditions. 
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Figures 

Figure 1: Nuclear and cytoplasmic effects of steroid hormones. Schematic diagram 

describing the mechanism of actions for all 4 major classes of steroids. Actions are classified 

into ‘nuclear’ and ‘cytoplasmic’ (mediated by membrane-bound receptors) and further 

described whether such actions are thought to be beneficial or detrimental, if steroid function 

is dysregulated. The nuclear mechanism of steroid mediated signalling involves binding of 

steroid receptors with their corresponding steroid receptor element (SRE). Binding to 

androgen and estrogen receptors elements (ARE and ERE) have been associated with 

regulation of apoptotic molecules, Bax and Bcl2. 

Figure 2: Understanding the effects of testosterone using iPSC-neurons derived from 

typically or atypically-developing individuals. A-C. Example of Day 45 human iPSC-

neurons expressing key neuronal and synaptic proteins (scale bar: 10µm). After 45 days, 

iPSC-neurons are positive for the microtubule-associated protein, MAP2 (green) (A), the 

pre-synaptic protein, Synapsin-1 (B) and the post-synaptic protein Ca2+/calmodulin-

dependent protein kinase II (CaMKII) (C). D. Preliminary data of the effects of testosterone 

(T) treatment (24 hours) on differential gene expression (log fold change, p≤0.05) of 

androgen receptor (AR), BDNF, GnRH and p38a. iPSC lines were generated from typically 

developed individuals (control: CTR.M3) or atypically developing individuals: i.e. patient 

diagnosed with autism-spectrum disorder (ASD.M1). Error bars indicated +/- standard error 

of the mean (SEM). 
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Figure 3: Cerebral organoids recapitulate cortical tissue architecture. A. Cerebral 

organoids are generated from pluripotent stem cells, such as iPSCs, which are removed 

from the 2D dish and aggregated to form small clumps called embryoid bodies. These begin 

spontaneously forming embryonic germ layers, and subsequent media selects for 

neuroepithelial tissue which is placed in a droplet of Matrigel to stimulate outgrowth of neural 

tube like buds. These buds expand and develop into lobes of brain tissue, including the 

cerebral cortex. B. Sectioning of cerebral organoids reveals their internal architecture with 

lobules containing fluid-filled cavities, much like ventricles, which are lined by neural stem 

cells (labelled in red by Sox2). Neurons (labelled in green by Tuj1) generated from this 

ventricular zone then migrate outward and cover the surface of the organoid. DAPI (blue) 

labels all cell nuclei. C. Proposed method to generate “personalized organoids” for steroid 

hormone research. 

 

Tables 

Table 1: Proposed therapeutic roles of estrogens and progesterone 
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Table 1: Therapeutic roles of estrogen and progesterones 

Steroid hormone Organism Therapeutic role 

Estrogen 

Human 

Wellbeing and improved cognition 

in healthy and schizophrenic (114, 

115) 

Rodents 

Higher survival of females after 

traumatic brain injury (116, 117) 

Positive neurological outcome in 

males (118) 

Reduction of apoptosis and 

enhanced recovery after spinal 

cord injury (119) 

Progesterone/ 

Allopregnanolone 

Human 
Protective effect in Alzheimer’s 

disease (121) 

Rodents 

Reduced depression in Parkinson’s 

rat model (122) 

Improved hippocampal structure 

and function after MCAO (123) 

Reduced cell death and DNA 

fragmentation after traumatic brain 

injury (129) 
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